Interleukin-1 receptor-related protein ST2 suppresses the initial stage of bleomycin-induced lung injury.
نویسندگان
چکیده
Acute lung injury has a range of causes, and occasionally leads to lethal respiratory failure. Despite advances in treatment, acute lung injury continues to have a high mortality rate, and thus a new therapeutic approach is needed. ST2 is an interleukin (IL)-1 receptor-related protein, and its expression is induced by various inflammatory responses. Recently, ST2 has been speculated to exert anti-inflammatory effects; therefore, we investigated the role of the ST2 in the murine model of acute lung injury. To elucidate the function of ST2 in vivo, mice that transiently overexpressed ST2 protein were prepared using the hydrodynamic gene transfer method, and lung injury was induced by intratracheal administration of bleomycin. In bleomycin-treated ST2-overexpressing mice, the increase of neutrophils in the bronchoalveolar lavage fluid (BALF) was markedly suppressed. Additionally, the levels of tumour necrosis factor-alpha and IL-6, as well as the concentration of albumin, in BALF were reduced compared with those of controls. Furthermore, the pulmonary architecture in ST2-overexpressing mice remained almost normal, and the survival rate was significantly improved. From these results, we concluded that ST2 has the potential to suppress the initial stage of acute lung injury, and therefore it may be a useful reagent for the treatment of acute lung injury.
منابع مشابه
Attenuation of bleomycin-induced pneumopathy in mice by monoclonal antibody to interleukin-12.
We previously demonstrated essential roles of the Fas-Fas ligand (FasL) pathway in bleomycin-induced pneumopathy in mice. T lymphocytes and natural killer cells express FasL on activation and use it as a cytotoxic effector molecule. Because interleukin (IL)-12 is known to play a critical role in cell-mediated immunity, we investigated whether anti-IL-12 antibody treatment suppresses the develop...
متن کاملSoluble ST2 suppresses the effect of interleukin-33 on lung type 2 innate lymphoid cells
Type 2 innate lymphoid cells (ILC2) in lungs produce interleukin (IL)-5 and IL-13 in response to IL-33 and may contribute to the development of allergic diseases such as asthma. However, little is known about negative regulators and effective inhibitors controlling ILC2 function. Here, we show that soluble ST2, a member of the IL-1 receptor family, suppresses the effect of IL-33 on lung ILC2 in...
متن کاملBleomycin stimulates lung epithelial cells to release neutrophil and monocyte chemotactic activities.
Although bleomycin, an antineoplastic drug, is used in the treatment of a variety of tumors, the mechanisms of bleomycin-induced lung injury and fibrosis are not fully elucidated. We postulated that bleomycin might stimulate A549 cells, a type II pneumocyte cell line, to release neutrophil and monocyte chemotactic activities (NCA and MCA, respectively). To test this hypothesis, A549 cell supern...
متن کاملA protective role for IL-13 receptor α 1 in bleomycin-induced pulmonary injury and repair
Molecular mechanisms that regulate lung repair vs. progressive scarring in pulmonary fibrosis remain elusive. Interleukin (IL)-4 and IL-13 are pro-fibrotic cytokines that share common receptor chains including IL-13 receptor (R) α1 and are key pharmacological targets in fibrotic diseases. However, the roles of IL-13Rα1 in mediating lung injury/repair are unclear. We report dysregulated levels o...
متن کاملRedox-active protein thioredoxin prevents proinflammatory cytokine- or bleomycin-induced lung injury.
Thioredoxin (TRX) is a multifunctional redox (reduction/oxidation)-active protein that scavenges reactive oxygen species by itself or together with TRX-dependent peroxiredoxin. TRX also has chemotaxis-modulating functions and suppresses leukocyte infiltration into sites of inflammation. Leukocyte infiltration and oxidative stress may be involved in the pathogenesis of several diseases, includin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European respiratory journal
دوره 33 6 شماره
صفحات -
تاریخ انتشار 2009